125 research outputs found

    Static Einstein-Maxwell Solutions in 2+1 dimensions

    Get PDF
    We obtain the Einstein-Maxwell equations for (2+1)-dimensional static space-time, which are invariant under the transformation q0=i q2,q2=i q0,Î±â‡ŒÎłq_0=i\,q_2,q_2=i\,q_0,\alpha \rightleftharpoons \gamma. It is shown that the magnetic solution obtained with the help of the procedure used in Ref.~\cite{Cataldo}, can be obtained from the static BTZ solution using an appropriate transformation. Superpositions of a perfect fluid and an electric or a magnetic field are separately studied and their corresponding solutions found.Comment: 8 pages, LaTeX, no figures, to appear in Physical Review

    Quantum Stability of (2+1)-Spacetimes with Non-Trivial Topology

    Get PDF
    Quantum fields are investigated in the (2+1)-open-universes with non-trivial topologies by the method of images. The universes are locally de Sitter spacetime and anti-de Sitter spacetime. In the present article we study spacetimes whose spatial topologies are a torus with a cusp and a sphere with three cusps as a step toward the more general case. A quantum energy momentum tensor is obtained by the point stripping method. Though the cusps are no singularities, the latter cusps cause the divergence of the quantum field. This suggests that only the latter cusps are quantum mechanically unstable. Of course at the singularity of the background spacetime the quantum field diverges. Also the possibility of the divergence of topological effect by a negative spatial curvature is discussed. Since the volume of the negatively curved space is larger than that of the flat space, one see so many images of a single source by the non-trivial topology. It is confirmed that this divergence does not appear in our models of topologies. The results will be applicable to the case of three dimensional multi black hole\cite{BR}.Comment: 17 pages, revtex, 3 uuencoded figures containe

    The Evolution of the Cosmic Microwave Background

    Full text link
    We discuss the time dependence and future of the Cosmic Microwave Background (CMB) in the context of the standard cosmological model, in which we are now entering a state of endless accelerated expansion. The mean temperature will simply decrease until it reaches the effective temperature of the de Sitter vacuum, while the dipole will oscillate as the Sun orbits the Galaxy. However, the higher CMB multipoles have a richer phenomenology. The CMB anisotropy power spectrum will for the most part simply project to smaller scales, as the comoving distance to last scattering increases, and we derive a scaling relation that describes this behaviour. However, there will also be a dramatic increase in the integrated Sachs-Wolfe contribution at low multipoles. We also discuss the effects of tensor modes and optical depth due to Thomson scattering. We introduce a correlation function relating the sky maps at two times and the closely related power spectrum of the difference map. We compute the evolution both analytically and numerically, and present simulated future sky maps.Comment: 23 pages, 11 figures; references added; one figure dropped and minor changes to match published version. For high-resolution versions of figures and animations, see http://www.astro.ubc.ca/people/scott/future.htm

    Transformation of Morphology and Luminosity Classes of the SDSS Galaxies

    Full text link
    We present a unified picture on the evolution of galaxy luminosity and morphology. Galaxy morphology is found to depend critically on the local environment set up by the nearest neighbor galaxy in addition to luminosity and the large scale density. When a galaxy is located farther than the virial radius from its closest neighbor, the probability for the galaxy to have an early morphological type is an increasing function only of luminosity and the local density due to the nearest neighbor (ρn\rho_n). The tide produced by the nearest neighbor is thought to be responsible for the morphology transformation toward the early type at these separations. When the separation is less than the virial radius, i.e. when ρn>ρvirial\rho_n > \rho_{\rm virial}, its morphology depends also on the neighbor's morphology and the large-scale background density over a few Mpc scales (ρ20\rho_{20}) in addition to luminosity and ρn\rho_n. The early type probability keeps increasing as ρn\rho_n increases if its neighbor is an early type. But the probability decreases as ρn\rho_n increases when the neighbor is a late type. The cold gas streaming from the late type neighbor can be the reason for the morphology transformation toward late type. The overall early-type fraction increases as ρ20\rho_{20} increases when ρn>ρvirial\rho_n > \rho_{\rm virial}. This can be attributed to the hot halo gas of the neighbor which is confined by the pressure of the ambient medium held by the background mass. We have also found that galaxy luminosity depends on ρn\rho_n, and that the isolated bright galaxies are more likely to be recent merger products. We propose a scenario that a series of morphology and luminosity transformation occur through distant interactions and mergers, which results in the morphology--luminosity--local density relation.Comment: 14 pages, 7 figures, for higher resolution figures download PDF file at http://astro.kias.re.kr/docs/trans.pdf ; references added and typos in section 3.2 corrected; Final version accepted for publication in Ap

    Natural Wormholes as Gravitational Lenses

    Get PDF
    Visser has suggested traversable 3-dimensional wormholes that could plausibly form naturally during Big Bang inflation. A wormhole mouth embedded in high mass density might accrete mass, giving the other mouth a net *negative* mass of unusual gravitational properties. The lensing of such a gravitationally negative anomalous compact halo object (GNACHO) will enhance background stars with a time profile that is observable and qualitatively different from that recently observed for massive compact halo objects (MACHOs) of positive mass. We recommend that MACHO search data be analyzed for GNACHOs.Comment: 4 pages; plus 4 figures; ReV_TeX 3.0; DOE/ER/40537-001/NPL94-07-01

    Median Statistics, H_0, and the Accelerating Universe

    Full text link
    (Abridged) We develop median statistics that provide powerful alternatives to chi-squared likelihood methods and require fewer assumptions about the data. Applying median statistics to Huchra's compilation of nearly all estimates of the Hubble constant, we find a median value H_0=67 km/s/Mpc. Median statistics assume only that the measurements are independent and free of systematic errors. This estimate is arguably the best summary of current knowledge because it uses all available data and, unlike other estimates, makes no assumption about the distribution of measurement errors. The 95% range of purely statistical errors is +/- 2 km/s/Mpc. The statistical precision of this result leads us to analyze the range of possible systematic errors in the median, which we estimate to be roughly +/- 5 km/s/Mpc (95% limits), dominating over the statistical errors. A Bayesian median statistics treatment of high-redshift Type Ia supernovae (SNe Ia) apparent magnitude versus redshift data from Riess et al. yields a posterior probability that the cosmological constant Lambda > 0 of 70 or 89%, depending on the prior information used. The posterior probability of an open universe is about 47%. Analysis of the Perlmutter et al. high-redshift SNe Ia data show the best-fit flat-Lambda model favored over the best-fit Lambda = 0 open model by odds of 366:1; corresponding Riess et al. odds are 3:1 (assuming prior odds of 1:1).Median statistics analyses of the SNe Ia data do not rule out a time-variable Lambda model, and may even favor it over a time-independent Lambda and a Lambda = 0 open model.Comment: Significant revisions include discussion of systematic errors in the median of H_0. Accepted for publication in The Astrophysical Journal, v548, February 20, 2001 issue. 47 pages incl. figures and table

    Primordial Gravitational Waves From Open Inflation

    Get PDF
    We calculate the spectrum of gravitational waves generated during inflation in open (Ω0<1)(\Omega _0<1) inflationary models. In such models an initial epoch of old inflation solves the horizon and flatness problems, and during this first epoch of inflation the quantum state of the graviton field rapidly approaches the Bunch-Davies vacuum. Then old inflation ends by the nucleation of a single bubble, inside of which there is a shortened epoch of slow-roll inflation giving Ω0<1\Omega _0<1 today. In this paper we re-express the Bunch-Davies vacuum for the graviton field in terms of the hyperbolic modes inside the bubble and propagate these modes forward in time into the present era. We derive the expression for the contribution from these gravity waves to the cosmic microwave background anisotropy including the effect of a finite energy difference across the bubble wall.Comment: 40 pages, TEX with phyzzx macro, 5 figure

    A new test for the stable clustering hypothesis

    Full text link
    The stable clustering hypothesis is a fundamental assumption about the nonlinear clustering of matter in cosmology. It states that the mean physical separation of particles is a constant on sufficiently small scales. While many authors have attempted to test the hypothesis with cosmological N-body simulations, no consensus has been reached on whether and where the hypothesis is valid, because of the limited dynamical range this type of simulations can achieve. In this Letter, we propose to test the hypothesis with high resolution halo simulations, since the individual halo simulations can resolve much better the fine structures of the halos and since almost all pairs of particles with small separations are presumed to be inside virialized halos. We calculated the mean pair velocity for 14 high resolution halos of ∌1\sim 1 million particles in a low-density flat cold dark matter model. The result agrees very well with the stable clustering prediction within the measurement uncertainty ∌30\sim 30% over a large range of scales where the overdensity is 10310^3 to 10610^6. The accuracy of the test can be improved to ∌10\sim 10% if some 100 halos with a similar resolution are analyzed.Comment: accepted for publication in ApJ; minor changes; 10 pages with 3 figures include

    Cosmology in a String-Dominated Universe

    Get PDF
    The string-dominated universe locally resembles an open universe, and fits dynamical measures of power spectra, cluster abundances, redshift distortions, lensing constraints, luminosity and angular diameter distance relations and microwave background observations. We show examples of networks which might give rise to recent string-domination without requiring any fine-tuned parameters. We discuss how future observations can distinguish this model from other cosmologies.Comment: 17 pages including 4 figures, of which one is in colo
    • 

    corecore